

SHARP

SCIENTIFIC CALCULATOR

WriteView		EL-W531TG EL-W531TH
	MODEL	EL-W535XG

OPERATION MANUAL

23CSC (TINSEA152EH01)

INTRODUCTION

About the calculation examples (including some formulas and tables) refer to the reverse side of this manual

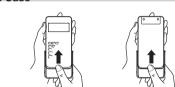
After reading this manual, store it in a convenient location for future reference.

Note: Some of the models described in this manual may not be available in some countries.

Operational Notes

- Do not carry the calculator around in your back pocket, as it may break when you sit down. The display is made of glass and is particularly fragile.
- Keep the calculator away from extreme heat such as on a car dashboard or near a heater, and avoid exposing it to excessively humid or dusty environments.
- Since this product is not waterproof, do not use it or store it where fluids, for example water, can splash onto it. Raindrops, water spray, juice, coffee, steam, perspiration, etc. will also cause malfunction.
- Clean with a soft, dry cloth, Do not use solvents or a wet cloth. Avoid using a rough cloth or anything else that may cause scratches.
- Do not drop it or apply excessive force.
- Never dispose of batteries in a fire.
- Keep batteries out of the reach of children.
- For the sake of your health, try not to use this product for long periods of time. If you need to use the product for an extended period, be sure to allow your eves, hands, arms, and body adequate rest periods (about 10-15 minutes every hour). If you experience any pain or fatigue while using this product, discontinue use immediately. If the discomfort continues, please consult a doctor.
- This product, including accessories, may change due to upgrading without prior notice.

- NOTICE -SHARP strongly recommends that separate permanent written records be kept of all important data. Data may be lost or altered in virtually any electronic memory product under certain circumstances. Therefore, SHARP assumes no responsibility for data lost or otherwise rendered unusable whether as a result of improper use, repairs, defects, battery replacement, use after the specified battery life has expired, or any other cause.


SHARP will not be liable nor responsible for any incidental or consequential economic or property damage caused by misuse and/or malfunctions of this product and its peripherals, unless such liability is acknowledged by law

 Press the RESET switch (on the back), with the tip of a ball-point pen or similar object, only in the following cases Do not use an object with a breakable or sharp tip. Note that pressing the RESET switch erases all data stored in memory.

- When using for the first time
- After replacing the battery To clear all memory contents
- When an abnormal condition occurs and all keys are inoperative

• If service should be required on this calculator, have the calculator serviced in the region (country) where you purchased it.

Hard Case

DISPLAY

 During actual use, not all symbols are displayed at the same time Only the symbols required for the usage under instruction are shown in the display and calculation examples

Calculating the Greatest Common Divisor (GCD)

What is the GCD of	ON/C) 2 4
24 and 36?	2ndF GCD 36

Indicates that some contents are hidden in the directions **★/**↓ shown.

- 2ndF Appears when 2ndF) is pressed, indicating that the functions shown in the same color as [2ndF] are enabled Indicates that hyp has been pressed and the hyperbolic HYP: functions are ena ed. If (2ndF) (arc hyp) is pressed, the
- symbols "2ndF HYP" appear. indicating that inverse hyperbolic functions are enabled. ALPHA: Appears when ALPHA is pressed, indicating that the functions shown in the same color as (ALPHA) are enabled. Appears when STO or RCL is pressed, and entry (recall)
- of memory contents can be performed. FIX/SCI/ENG/N1/N2: Indicates the notation used to display a value and changes by SET UP menu. N1 is displayed on-screen
- as "NORM1" and N2 as "NORM2" DEG/RAD/GRAD: Indicates angular units.
- BUSY: Appears during the execution of a calculation.
- W-VIEW: Indicates that the WriteView editor is selected. M: Indicates that a numerical value is stored in the independent memory (M)

BEFORE USING THE CALCULATOR

 $\ensuremath{\texttt{Press}}$ $\ensuremath{\textcircled{\text{ON/C}}}$ to turn the calculator on. The data that was on-screen when the power was turned off will appear on the display. Press (2ndF) (OFF) to turn it off.

Key Notations Used in this Manual

- To specify e^x : 2ndF e^x _In_) To specify In: In To specify E: (ALPHA) E
- Functions that are printed in gray adjacent to the keys are effective in specific modes. The multiplication operator "X" is differentiated from the letter "X" in this manual as follows:
- To specify the multiplication operator: (\times)
- To specify the letter "X": $(\square P \square A)$ In certain calculation examples, where you see the LINE symbol,
- the key operations and calculation results are shown as they would appear in the Line editor. In each example, press ON/C to clear the display first. Unless
- otherwise specified, calculation examples are performed in the WriteView editor (SETUP 2 0 0) with the default display settings.

Clearing the Entry and Memories

Operation	Entry (Display)	A–F, M, X, Y	D1–D3	ANS	STAT*1
ON/C	0	Х	Х	Х	Х
(2ndF) CA	0	Х	Х	0	0
Mode selection (MODE)	0	х	Х	Х	X*2
(2ndF) (M-CLR) 0	0	х	х	Х	х
2ndF)(M-CLR) 1 0	0	0	0	0	0
2ndF)(M-CLR) 2 0 *3	0	0	0	0	0
RESET switch*3	0	0	0	0	0
O Clear X Betain					

- *1 Statistical data (entered data)
- *2 Cleared when changing between sub-modes in STAT mode. *3 The RESET operation will erase all data stored in memory and
- restore the calculator's default settings.

Memory clear key Press (2ndF) (M-CLR) to display the menu

- To initialize the display settings, press

 The parameters set
- as follows: Angular unit: DEG
- Display notation: NORM1
- N-base: DEC Recurring decimal: OFF

Mode Selection

- NORMAL mode: MODE Used to perform arithmetic operations and function calculations
- STAT mode: (MODE) 1
- Used to perform statistical operations. TABLE mode: [MODE] 2
- Used to illustrate the changes in values of a function in table format. DRILL mode: MODE 3
- Used to practice math and multiplication table drills

HOME Kev

- Press (HOME) to return to NORMAL mode from other modes. Note: Equations and values currently being entered will disappear, in the same way as when the mode is changed.
- SET UP Menu Press (SET UP) to display the SET UP menu. Press ON/C to exit the SET UP menu.
- Note: You can press BS to return to the previously displayed parent menu
- Determination of the angular unit (degrees, radians, and grades) DEG (°): SETUP 0 0 (default) RAD (rad): SETUP 0 1
- GRAD (g): SETUP 0 2

calculation (refer to the table below)

Single-variable statistical calculation

0 Selecting the display notation and decimal places

Editing the Equation

Back space and delete key

previous menu level.

Multi-line Playback Function

Priority Levels in Calculation

and other calculation ending instructions

SCIENTIFIC CALCULATIONS

Arithmetic Operations

Constant Calculations

result to engineering notation.

increase the exponent.

Functions

[2ndF] (ab/c)

abs value

logn (base, value)

Random Function

Random numbers

Random dice

Random coin

Random integer

Entry value

multiples of 15

multiples of $\frac{1}{12}\pi$

multiples of $\frac{50}{3}$

23

Errors

omitted

precedence over any other calculations.

Press MODE 0 to select NORMAL mode.

cursor is directly over by pressing 2ndF DEL

of the equation

1 0).

Just after obtaining an answer, pressing <a> brings you to the

end of the equation and pressing brings you to the beginning Press , b, b, a, or to move the cursor. Press (2ndF) or (2ndF) to jump the cursor to the beginning or the end

To delete a number or function, move the cursor to the right of it, then press \fbox{BS} . You can also delete a number or function that the

Note: In a multi-level menu, you can press BS to back to the

This calculator is equipped with a function to recall previous equations and answers in NORMAL mode. Pressing

deleted to make room, starting with the oldest.
To edit an equation after recalling it, press or .

unit conversion, editor change (SETUP) 2 0

display the previous equation. The number of characters that can be

The multi-line memory will be cleared by the following operations: [2ndF] CA, mode change, RESET, N-base conversion, angular

0 1 or (SET UP 2 1), and memory clear ((2ndF) M-CLR

This calculator performs operations according to the following priority:

① Fractions (1 r 4 etc.) ② Functions preceded by their argument

 $(x^{-1}, x^2, n!, \text{ etc.})$ (3) $y^x, x\sqrt{4}$ Implied multiplication of a memory

value (2Y, etc.) (5) Functions followed by their argument (sin, cos

 $(\odot \text{ nCr, nPr, GCD, LCM} (\odot \times, \div, \text{int} \div \odot +, - (\odot \text{ AND} \oplus \text{ OR, XOR}, \text{XNOR} (\odot =, M+, M-, \Rightarrow M, \blacktriangleright \text{ DEG}, \blacktriangleright \text{ RAD}, \blacktriangleright \text{ GRAD}, \rightarrow r\theta, \rightarrow xy$

The closing parenthesis) just before = or M+ may be

Subtraction and division are performed in the same manner. For

In constant calculations, the addend becomes a constant.

In constant calculations, constants will be displayed as K.

You can use (ALPHA) (ENG) or (ALPHA) (ENG>) to convert the calculation

Press (ALPHA) (<ENG) to decrease the exponent. Press (ALPHA) (ENG>) to

In the Line editor, the following symbols are used:
 . to indicate an expression's power. (<u>y</u>^x), <u>2ndF</u> <u>(d</u>^x), <u>2ndF</u> <u>(10^x)</u>

• T: to separate integers, numerators, and denominators. (a/b)

When using (2ndF) [log.X) or (2ndF) abs in the Line editor, values are entered in the following way:

The random function has four settings. (This function cannot be

random numbers in succession, press ENTER. Press ON/C to exit.

A pseudo-random number, with three significant digits from 0 up to

To simulate a die-rolling, a random integer between 1 and 6 can be

selected while using the N-base function.) To generate further

Note: In the WriteView editor, the result will be a fraction or 0

To simulate a coin flip, 0 (heads) or 1 (tails) can be randomly

You can specify a range for the random integer with "R.Int(" only.

For example, if you enter (2ndF) (RANDOM) (3) 1 (x²,y) 99 () (ENTER), a

Each time 2ndF DRG is pressed, the angular unit changes in sequence.

Memory calculations can be performed in NORMAL and STAT modes.

Press RCL and a variable key to recall the value from that memory.

To place a variable in an equation, press ALPHA and a variable key.

In addition to all the features of temporary memories, a value can

An error will occur if an operation exceeds the calculation ranges.

occurs, pressing <a>or or <a>automatically moves the cursor

or if a mathematically illegal operation is attempted. When an error

Press (STO) and a variable key to store a value in memory

be added to or subtracted from an existing memory value.

ERRORS AND CALCULATION RANGES

Press (ON/C) (STO) M to clear the independent memory (M).

0.999, can be generated by pressing 2ndF) RANDOM

generated by pressing 2ndF RANDOM 1 ENTER.

generated by pressing 2ndF) RANDOM 2 ENTER.

R.Int(minimum value, maximum value)

Temporary memories (A-F, X and Y)

Memory Calculations

Independent memory (M)

random integer from 1 to 99 will be generated

Angular Unit Conversions

multiplication, the multiplicand becomes a constant

• The settings (FSE) in the SET UP menu do not change

Refer to the calculation examples for each function.

Conversion to Engineering notation

etc.) (6) Implied multiplication of a function ($2\sin 30$, $A\frac{1}{4}$, etc.)

If parentheses are used, parenthesized calculations have

saved is limited. When the memory is full, stored equations will be

Last answer memory (ANS)

answer memory

using up to 14 digits.

Definable memories (D1–D3)

Notes:

6

values.

(D1-D3)

Memory List

instructions.

Notes:

6

8

9

0

Ð

Chain Calculations

pressing (2ndF) +DEG.

Operations (N-base)

The calculation result obtained by pressing ___ or any other

calculation ending instruction is automatically stored in the last

automatically stored in the X or Y memories replacing any existing

• Two x' values from a quadratic regression calculation in

• Use of RCL or ALPHA will recall the value stored in memory

You can store functions or operations in definable memories

To store a function or operation, press (STO), followed by a definable

memory key ([D1], [D2], or [D3]), followed by the operation you want to store. Menu-related operations, such as (SETUP), cannot be

To call a stored function or operation, press the corresponding

memory key. Calling a stored function will do nothing if the function that is called would be unusable in the current context.

Any functions or operations that are stored in a definable memory

You cannot store functions or operations in definable memories

Press (ALPHA) (MEMORY) to display a list of the values saved in memory.

The previous calculation result can be used in the subsequent

calculation. However, it cannot be recalled after entering multiple

Arithmetic operations and memory calculations can be performed using fractions. In NORMAL mode, conversion between a decimal

Improper/proper fractions will be converted to and displayed as

decimal numbers if the number of digits used in their expression

is greater than nine. In the case of mixed fractions, the maximum

To convert a sexagesimal value to a fraction, first convert it by

Binary, Pental, Octal, Decimal, and Hexadecimal

NORMAL mode. The four basic arithmetic operations, calculations

with parentheses, and memory calculations can also be performed. along with the logical operations AND, OR, NOT, NEG, XOR, and

Note: The hexadecimal numbers A-F are entered by pressing

Likewise, when the result of a binary, pental, octal, or hexadecimal

calculation includes a fractional part, the fractional part will be

truncated. In the binary, pental, octal, and hexadecimal systems,

Time, Decimal, and Sexagesimal Calculations

Conversion between decimal and sexagesimal numbers can be

performed. In addition, the four basic arithmetic operations and

memory calculations can be performed using the sexagesimal

Before performing a calculation, select the angular unit.

The results of coordinate conversions will be displayed as

 \leftrightarrow

Decimal calculation results are internally obtained in scientific

notation, with up to 14 digits in the mantissa. However, since calculation results are displayed in the form designated by the

display notation and the number of decimal places indicated, the

By using the modify function (2ndF) (MDF), the internal value is

When using the WriteView editor, if the calculation result is

• Fluid from a leaking battery accidentally entering an eve could

Should fluid from a leaking battery come in contact with your

f the product is not to be used for some time, to avoid damage to

the unit from a leaking battery, remove it and store in a safe place.

result in serious injury. Should this occur, wash with clean

skin or clothes, immediately wash with clean water.

Do not leave an exhausted battery inside the product.

An exhausted battery left in the calculator may leak and

Explosion risk may be caused by incorrect handling.

Do not throw batteries into a fire as they may explode

4. EL-W531TG/W535XG: Remove the used battery by prying it

5. EL-W531TG/W535XG: Install one new battery. Make sure the

FL-W531TH: Install one new battery First insert the "-" side

7. Press the RESET switch (on the back) with the tip of a

Adjust the display contrast. See "Adjusting the display

Fig. 2

Make sure that the display appears as shown below. If the

display does not appear as shown, remove the battery, reinstall

This calculator will turn itself off to save battery power if no key is

Mantissa: 10 digits

Exponent: 2 digits

Mantissas of up to 14 digits

EL-W531TG/W535XG

EL-W531TG/W535XG

the alkaline battery only

0°C–40°C (32°F–104°F)

EL-W531TG/W535XG

SHARP

SHARP CORPORATION

Built-in solar cells

EL-W531TH

EL-W531TH

EL-W531TH

and hard case

64 calculations 10 numeric values

1.5 V (DC): Backup battery

battery (size AAA or R03) × 1

1.5 V ---- (DC): Heavy duty manganese

Approx. 3,000 hours when continuously

displaving 55555 at 25°C (77°F), using

Approx. 17,000 hours when continuously

80 mm (W) \times 166 mm (D) \times 15 mm (H)

3-5/32" (W) × 6-17/32" (Ď) × 19/32" (H)

Approx. 113 g (0.25 lb) (including battery)

Approx. 119 g (0.27 lb) (including battery)

Battery \times 1 (installed), operation manual,

displaying 55555 at 25°C (77°F)

battery (LR44 or equivalent) \times 1)

NORMAL MODE

Fig. 3

 96×32 dot matrix liquid crystal display

0.

EL-W531TH: Remove the used battery.

water and immediately consult a doctor.

Keep batteries out of the reach of children.

1. Turn the power off by pressing (2ndF) (OFF). 2. Remove two screws. (Fig. 1)

damage the calculator.

Replacement Procedure

3. Lift the battery cover to remove

side is facing up.

toward the spring. (Fig. 3)

Fig. 1

Display:

24

6. Replace the cover and screws

ball-point pen or similar object

contrast". And then press ON/C.

it, and check the display once again.

Automatic Power Off Function

pressed for approximately 10 minutes.

SPECIFICATIONS

Internal calculations:

Pending operations:

Power source:

Operating time:

(varies according to

use and other factors)

Operating temperature:

External dimensions:

FOR MORE INFORMATION

https://global.sharp/calculator/

ABOUT SCIENTIFIC CALCULATORS

Weight:

Accessories:

Visit our Web site

Display of calculation results:

converted to match that of the display, so that the displayed value

displayed using fractions or irrational numbers, press CHARE to

internal calculation result may differ from that shown in the display.

Polar coord.

decimal numbers even in the WriteView editor.

Rectangular coord.

 y^{x} , y^{c} , y

number and a fraction can be performed by pressing (

number of displayable digits (including integers) is eight.

Conversions can be performed between N-base numbers in

XNOR on binary, pental, octal, and hexadecimal numbers

parts cannot be entered. When a decimal number having

hexadecimal number, the fractional part will be truncated

negative numbers are displayed as a complement.

system. Notation for sexagesimal is as follows

Coordinate Conversions

Modify Function

convert it to decimal form first.

Cautions

a fractional part is converted into a binary, pental, octal, or

Ð

B

- @

Ð

will be replaced when you save a new one into that memory.

Calculation results from the functions indicated below are

• $\rightarrow r\theta$, $\rightarrow xv$; X memory (r or x). Y memory (θ or v)

STAT mode: X memory (1:), Y memory (2:)

stored. Press ON/C to return to the previous display

when entering values or items in STAT mode.

The values are shown in a 9-character range

Applicable memories: A, B, C, D, E, F, X, Y, M

Fraction Calculations

Two settings of Floating point (NORM1 and NORM2), Fixed decimal point (FIX), Scientific notation (SCI), and Engineering notation (ENG) When SETUP 1 0 (FIX) or SETUP 1 2 (ENG) is

- pressed, the number of decimal places (TAB) can be set to any value between 0 and 9.
 - When [strup] 1 (SCI) is pressed, the number of significant digits can be set to any value between 0 and 9. Entering 0 will set a 10-digit display.
- Setting the floating point number system in scientific notation NORM1 (the default) and NORM2. A number is automatically
- $\begin{array}{l} \text{NORMAL} (\texttt{In constitution outside a preset range:} \\ \text{NORM1} ((\texttt{BTUP} 1 3): 0.00000001 \leq | x | \leq 9,999,999,999 \\ \text{NORM2} ((\texttt{BTUP} 1 4)): 0.01 \leq | x | \leq 9,999,999,999 \\ \end{array}$
- Selecting the editor and setting the answer display 2
- This calculator has the following two editors in NORMAL mode: WriteView and Line
- Set the display format for numerical calculation results in WriteView editor.

The WriteView editor

- EXACT(a/b, $\sqrt{,\pi}$) (SET UP) 2 0 0 (default) APPROX. (SET UP) 2 0 1 (SET UP) 2 1 The Line editor
- Notes
 - When "EXACT(a/b, $\sqrt{\pi}$, π)" is set, results will appear in fraction format or irrational number format (including π and $\sqrt{}$) when display is possible.
 - When "APPROX," is set, results will be decimal display or fraction display, and will be not shown in irrational number format
- (including π and $\sqrt{}$). Press (Refer to change the calculation results to another format that can be displayed.

Adjusting the display contrast

Press $(\texttt{SET UP} \ \texttt{3})$, then (+) or (-) to adjust the contrast. Press ON/C to exit.

Insert and overwrite entry methods

When using the Line editor, you can change the entry method from "INSERT" (the default) to "OVERWRITE". After you switch to the overwrite method (by pressing $\underline{\text{(strue)}} 4 1$), the triangular cursor will change to a rectangular one, and the number or function underneath it will be overwritten as you make entries.

Setting the recurring decimal

- 3 In NORMAL mode, calculation results can be shown in a recurring decimal format
- Recurring decimal is OFF:
 SETUP
 5
 0
 (default)

 Recurring decimal is ON:
 SETUP
 5
 1
 1
 1
- In the WriteView editor, the recurring part is indicated by "-". In the Line editor, the recurring part is indicated in parentheses.
- If over 10 digits, including the recurring part, the result cannot be displayed in recurring decimal format

Setting of the decimal point

You can show the decimal point in the calculation result as either a dot or a comma.

ENTERING, DISPLAYING, AND EDITING THE EQUATION

In the WriteView editor, you can enter and display fractions or

Displaying calculation results (when EXACT is selected)

When possible, calculation results will be displayed using fractions.

• Mixed fractions (with or without π) \rightarrow improper fractions (with or

Irrational numbers (square roots, fractions made using square

In the following cases, calculation results may be displayed using $\sqrt{}$:

decimal numbers if the number of digits used in their expression

is greater than nine. In the case of mixed fractions, the maximum

number of displayable digits (including integers) is eight

If the number of digits in the denominator of a fractional result

In the Line editor, you can enter and display equations line by line

• Use CHARE to switch the display format to fractional form or

You can see the changes in values of one or two functions using

Up to three lines of text may be viewed on the screen at one time

In the Line editor, calculation results are displayed in decimal form

that uses π is greater than three, the result is converted to and

DEG

RAD

GRAD

Proper fractions (with or without π) \rightarrow decimal numbers

· Arithmetic operations and memory calculations

and π . When you press \mathfrak{m} , the display will cycle through the

The WriteView editor can be used in NORMAL mode

DOT: (SET UP) 6 0 (default) COMMA: (SET UP) 6 1 DOT:

The WriteView Editor

certain functions as you would write them

Entry and display

following display styles:

shown using $\sqrt{}$

The Line Editor

Entry and display

TABLE MODE

Setting a table

TABLE mode.

Notes

without π) \rightarrow decimal numbers

roots) \rightarrow decimal numbers

Trigonometric calculations In trigonometric calculations, when

entering values such as those in

Improper/proper fractions will be

converted to and displayed as

displayed as a decimal number.

or line fraction notation if possible.

1. Press MODE 2 to enter TABLE mode

The default starting value is 0.

. Enter a function (Function1), and press (ENTER)

decimal form (if possible).

the table to the right, results may be

• During entry, the decimal point is only shown as a dot.

Calculating the Least Common Multiple (LCM)

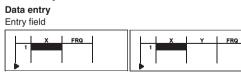
What is the LCM of	ON/C) 1 5
15 and 9?	(2ndF) (LCM) 9
	=

Calculating Quotient and Remainder

- "Q" indicates "Quotient", and "B" indicates "Bemainder". Pressing 2ndF (int÷) cannot be followed by pressing a key for another operation such as $(+, -, \times, \div)$, otherwise an error will
- The quotient and remainder are shown in "NORM1" format. If not all digits can be displayed in "NORM1" format, normal division is performed.

Prime Factorization

- In NORMAL mode, the calculation result can be shown as a product of prime numbers.
- A positive integer greater than 2 and no more than 10 digits can be factored into primes.
- A number that cannot be factored into a prime number with 3
- digits or shorter is shown in parentheses. The calculation result of prime factorization is displayed
- according to the editor setting (W-VIEW or LINE). The calculation result of prime factorization may extend off the
- edges of the screen. You can see those parts by pressing or . To jump to the left end or right end, press (2ndF) or (2ndF) ().


STATISTICAL CALCULATIONS

Statistical calculations can be performed in STAT mode. There are eight sub-modes within STAT mode. Press (MODE) [1] then press the number key that corresponds to your choice

- 0 (SD): Single-variable statistics
- (a+bx): Linear regression
- 2 (a + b x + c x²): Quadratic regression
- $(\mathbf{a} \cdot \mathbf{e}^{\mathbf{b}} \mathbf{x})$: Euler exponential regression (a+b•l n x): Logarithmic regression
- (a·x^b): Power regression
- 6 (a + b / x): Inverse regression
- 7 (a b^x): General exponential regression
- The statistical data input screen appears

After entering statistical data from the input screen, press (DATA) or $\fbox{ON/C}$ and close the input table. You can then check statistical values from the STAT menu (ALPHA) (STAT) and specify statistical variables.

Data Entry and Correction

Single-variable data table Two-variable data table

- After entering the data, press ENTER. The input is finalized and the cursor moves to the next line. If data was not entered in an x or y, 0 is entered, 1 is entered in FRQ (frequency), and the cursor moves to the next line.
- You can use (x,y) to enter X and FRQ (or X, Y, and FRQ) at once. In the input table, up to 6 digits are displayed for each value, including the sign and decimal point. Any values that exceed 6
- digits in length are displayed in exponent notation. Up to 100 data items can be entered. With single-variable data, a data item with an assigned frequency of one is counted as one data item, while an item with an assigned frequency of 2 or higher is stored as a set of two data items. With two-variable data, a set of data items with an assigned frequency of one is counted as two data items, while a set of items with an assigned
- requency of 2 or higher is stored as a set of three data items To execute statistical calculation, press (DATA) or (ON/C) and close the input table.

Data correction

Use (,), (), (), or () to move the cursor and select the desired data. Press (2ndE) or (2ndE) () to jump the cursor to the beginning or end of the data.

Data correction

Move the cursor to the data that you want to correct, enter the numeric value, and press ENTER

Data insertion

To insert a line in front of the cursor position, press (ALPHA) (INS-D) The initial values entered in the inserted data are 0 in x and y, and 1 in FRQ.

Data deletion

To delete the entire line where cursor is positioned, press (2ndF) (DEL) Notes: • In STAT mode, all statistical data will be erased if the submode

- is changed or (2ndF) CA is pressed.
 In STAT mode, press (DATA) to display the input table.

Statistics of ① and ③.

 \overline{x}

sx

s²x

 σx

 $\sigma^2 x$

 Σx

 Σx^2

xmin

xmax

 \overline{v}

sy

 S^2y

σy

 $\sigma^2 y$

 Σy

 Σxy

 $\Sigma x^2 y$

∑хз

 Σx^4

ymin

vmax

 Q_1

 Q_3

а

b

C

 R^2

STAT Menu

(ALPHA) (STAT)

ALPHA STAT

separately.

ALPHA)

AL PHA

Notes:

STAT menu (ALPHA) (STAT))

statistical calculation.

An error will occur when

The denominator is zero.

Med

2 Σy^2

3

4

1

inear regression calcu

12.

45.

B

Ð

@0

Statistics of (1), (2) and (4). In addition, the estimate of v for a given x (estimate y') and the estimate of x for a given y (estimate x'). **Quadratic regression calculation**

or "2:", and stored separately in the X and Y memories.

and general exponential regression calculations

and b, from converted data rather than entered data.)

Number of samples

Mean of samples (x data)

Sample variance (x data)

Population variance (x data)

Sum of samples (x data)

Mean of samples (v data)

Sample variance (y data)

Population variance (y data)

Sum of samples (y data)

power regression, inverse regression,

Statistical Calculations and Variables

The following statistics can be obtained for each statistical

Statistics of (1), (2) and (4). And coefficients a, b, c in the quadratic regression formula ($v = a + bx + cx^2$). (For guadratic regression calculations, no correlation coefficient (r) can be obtained.) When there are two x' values, each value will be displayed with "1:

You can also specify the 1st value (x1) and the 2nd value (x2) separately.

Euler exponential regression, logarithmic regression,

Statistics of (1), (2) and (4). In addition, the estimate of y for a

given x and the estimate of x for a given y. (Since the calculator

converts each formula into a linear regression formula before actual

calculation takes place, it obtains all statistics, except coefficients a

Sample standard deviation (x data)

Population standard deviation (x data)

Sum of squares of samples (x data)

Minimum value of samples (x data)

Maximum value of samples (x data)

Sample standard deviation (y data)

Population standard deviation (y data)

Sum of squares of samples (y data)

Sum of products of samples (x, y)

Sum of products of samples (x^2, y)

Sum of 3rd powers of samples (x data)

Sum of 4th powers of samples (x data)

Minimum value of samples (y data)

Maximum value of samples (v data)

First quartile of sample (x data)

Third quartile of sample (x data)

Coefficient of regression equation

Coefficient of regression equation

After closing the input table, you can view statistical values, view

Display statistical values

(ALPHA) (STAT) 5: Specify regression coefficient variables

regression coefficient values, and specify statistical variables from

Display regression coefficient values

Specify statistical value (Σ related) variables

Specify statistical value variables

Specify max/min value variables

List display of regression coefficient values and specification of

regression coefficient variables do not appear in single-variable

Estimated values x' and v' are specified with the keys ((2ndF) x'),

x2' from the STAT menu (ALPHA) (STAT) 5) to obtain the values

In the statistical value and regression coefficient value lists, you

The absolute value of the intermediate result or calculation result

· An attempt is made to take the square root of a negative number

No solution exists in the quadratic regression calculation.

(2ndF) y'). If there are two x' values, you can specify x1' and

cannot return to the menu by pressing BS.

Statistical Calculation Formulas

is equal to or greater than 1×10^{100} .

Correlation coefficient (Except Quadratic regression)

Coefficient of quadratic regression equation

Coefficient of determination (Quadratic regression)

Coefficient of determination (Except Quadratic regression)

Median of sample (x data)

- You can use and to move the cursor between the starting value and step value. 6. Press E
 - ER when you finish entering a step value. A table with a variable X and the corresponding values (ANS column) appears, displaying 3 lines below the starting value If you entered two functions, the ANS1 and ANS2 columns appear

4. Enter a starting value (X_Start:), and press [ENTER].

5. Enter a step value (X_Step:). The default step value is 1.

- You can use 🔺 and 💌 to change the X value and see its corresponding values in table format. The table is for display only and you cannot edit the table
- The values are displayed up to 7 digits, including signs and a decimal point
- Press or to move the cursor to ANS column (ANS1
- and ANS2 columns if you entered two functions) or X column
- Full digits of the value on the cursor are displayed on the bottom right.
- Notes:
 - In a function, only "X" can be used as a variable, and other variables are all regarded as numbers (stored into the variables). Irrational numbers such as $\sqrt{2}$ and π can also be entered into a
- starting value or a step value. You cannot enter 0 or a negative number as a step value
- You can use WriteView editor when inputting a function.
- The following features are not used in TABLE mode: coordinate conversions, conversion between decimal and sexagesimal numbers, and angular unit conversions.
- It may take time to make a table, or "-------" may be displayed, depending on the function entered or conditions specified for the variable X
- Please note that when making a table, the values for variable X are rewritten.
- Press (2ndF) CA) or mode selection to return to the initial screen of the mode, and return to the default values for the starting value and step value

DRILL MODE

Math Drill: MODE 3 0

Math operation questions with positive integers and 0 are displayed randomly. It is possible to select the number of questions and operator type

Multiplication Table (× Table): MODE 3 1 Questions from each row of the multiplication table (1 to 12) are displayed serially or randomly.

To exit DRILL mode, press (MODE) and select another mode

Using Math Drill and x Table

- 1. Press MODE 3 0 for Math Drill or MODE 3 1 for × Table. 2. Math Drill: Use ▲ and ▼ to select the number of
- guestions (25, 50, or 100) **Table**: Use **A** and **T** to select a row in the multiplication table (1 to 12)
- 3. Math Drill: Use <a> and <>> to select the operator type for questions $(+, -, \times, \div, \text{ or } + - \times \div)$
- Table: Use <a> and <> to select the order type ("Serial" or 'Random").
- 4. Press ENTER to start.
- When using Math Drill or × Table (random order only), guestions are randomly selected and will not repeat except by chance.
- 5. Enter your answer. Press ON/C or BS to clear the entered number and then enter the correct answer
- 6. Press (ENTER). If the answer is correct, "u" appears and the next question is displayed.
 If the answer is wrong, "X" appears and the same question is
- displayed. This will be regarded as an incorrect answer.
- If you press **ENTER** without entering an answer, the correct answer is displayed and then the next question is displayed. This will be regarded as an incorrect answer.
- Continue answering the series of questions by entering the answer and pressing (ENTER).
- 8. After you finish, press ENTER and the number and percentage of correct answers are displayed.
- 9. Press ENTER to return to the initial screen for your current drill.

Ranges of Math Drill Questions

2

- The range of questions for each operator type is as follows. + Addition operator: "0 + 0" to "20 + 20"
- Subtraction operator: "0 0" to "20 20"; answers are positive integers and 0.
- Multiplication operator: " 1×0 " or " 0×1 " to " 12×12 " **Division operator:** " $0 \div 1$ " to " $144 \div 12$ "; answers are positive integers from 1 to 12 and 0, dividends of up to
- 144, and divisors of up to 12. +-×÷ Mixed operators: Questions within all the above ranges are displayed

back to the place in the equation where the error occurred. Edit the equation or press (ON/C) to clear the equation

Error codes and error types

ERROR 01: Syntax error

An attempt was made to perform an invalid operation Ex. 2 + - 5 =

ERROR 02: Calculation error

- The absolute value of an intermediate or final calculation result equals or exceeds 10100.
- An attempt was made to divide by zero (or an intermediate calculation resulted in zero).
- The calculation ranges were exceeded while performing calculations.
- O or a negative number was entered as a step value in TABLE mode. The absolute value of a starting value or a step value equals or exceeds 10100 in TABLE mode
- When the number to be factored into primes is greater than 2 and other than a 10-digit positive integer, or when the result of prime factorization is a negative number, decimal, fraction, $\sqrt{}$, or π .

The selected item cannot be deleted by pressing BS or (2ndF)

In this example, delete the exponent before attempting to delete

The function or operation stored in definable memory (D1 to D3)

Ex. An attempt was made to recall a statistical variable from

The equation (including any calculation ending instructions)

exceeded its maximum input buffer (159 characters in the

Within the ranges specified, this calculator is accurate to ± 1

of the 10th digit of the mantissa. However, a calculation error

increases in continuous calculations due to accumulation of

each calculation error. (This is the same for v^x , $x\sqrt{2}$, n!, e^x , ln,

etc., where continuous calculations are performed internally.)

Additionally, a calculation error will accumulate and become larger

in the vicinity of inflection points and singular points of functions

If the absolute value of an entry or a final or intermediate result of a calculation is less than 10^{-99} , the value is considered to be 0

Display of results using $\sqrt{}$ (when EXACT is selected)

Calculation results may be displayed using $\sqrt{}$ when all of the

When each coefficient falls into the following ranges:

· When the number of terms in the intermediate and final

Note: The result of two fractional terms that include $\sqrt{}$ will be

Improper handling of batteries can cause electrolyte leakage or

When installing, orient the battery properly as indicated in the calculator.

explosion. Be sure to observe the following handling rules:

The battery is factory-installed before shipment, and may

Notes on erasure of memory contents

contents in case accidental erasure occurs.

the display contrast, the battery requires replacement. EL-W531TG/W535XG: If the display has poor contrast or nothing appears on the display when ONC is pressed in dim lighting, ever

When to Replace the Battery

be exhausted before it reaches the service life stated in the

When the battery is replaced, the memory contents are

EL-W531TH: If the display has poor contrast even after adjusting

after adjusting the display contrast, it is time to replace the battery

erased. Erasure can also occur if the calculator is defective

or when it is repaired. Make a note of all important memory

 $1 \le a < 100; 1 < b < 1,000; 0 \le c < 100;$

reduced to a common denominator.

Make sure the new battery is the correct type

 $1 \le d < 1,000; 1 \le e < 100; 1 \le f < 100$

calculation results is one or two.

BATTERY REPLACEMENT

Notes on Battery Replacement

When intermediate and final calculation results are displayed in

WriteView editor or 161 characters in the Line editor). An

equation may not exceed its maximum input buffer

ERROR 03: Nesting error

- The available number of buffers was exceeded. (There are 10 buffers for numeric values and 64 buffers for calculation instructions).
- ERROR 04: Data over
- Data items exceeded 100 in STAT mode.

DEL in the WriteView editor. Ex. $\sqrt{5}$ 5 \checkmark x^2 \checkmark BS

Alert Messages

the parentheses.

cannot be called.

within NORMAL mode.

Calculation Ranges

Calculation ranges

following conditions are met:

the following form:

 $\pm \frac{a\sqrt{b}}{e} \pm \frac{c\sqrt{d}}{f}$

specifications.

 $\pm 10^{-99}$ to $\pm 9.999999999 \times 10^{99}$ and 0.

in calculations and in the display.

Cannot call!

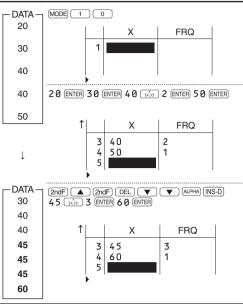
Buffer full!

Cannot delete

EXEMPLES ANWENDU EJEMPLOS ESEMPI DI RÄKNEEXE		
Write	View	EL-W531TG EL-W531TH EL-W535XG
(FS SET UP)	E)	
100000 ÷ 3 =		
[NORM1]	ON/C 100000 ÷ 3 = CHANGE CHANGE	33'333.33333
\rightarrow [FIX: TAB 2]	SET UP 1 0 2	33'333.33
\rightarrow [SCI: SIG 2]	SET UP 1 1 2	3.3 e 04
\rightarrow [ENG: TAB 2]	SET UP 1 2 2	33.33 e 03
\rightarrow [NORM1]	SET UP 1 3	33'333.33333
2 SET UP (ED	ITOR)	
\rightarrow [APPROX.]	ON/C (SET UP) 2 0	1 0.
1 ÷ 2 =	1 ÷ 2 =	0.5
→ [EXACT(a/b,√,,	r)] (SET UP) (2) (0) (0)	0.
1 ÷ 2 =	1 ÷ 2 =	<u>1</u> 2
	CURRING DECIMAL	_)
→ [ON]	(ON/C) (SET UP) 5 1	0.
611 ÷ 495 =	611 ÷ 495 =	1 <u>116</u> 1 <u>495</u>
	CHANGE	<u>611</u> 495
	CHANGE	1.234
	CHANGE	1.234343434
	CHANGE	1 <u>116</u> 1 <u>495</u>
LINE	611 ÷ 495 =	1.2(34)
	CHANGE	1.234343434
	CHANGE	1 - 116 - 495
	CHANGE	611-495
	CHANGE	1.2(34)
\rightarrow [OFF]	ON/C (SET UP) 5 0	0.
4 CHANGE		
$\frac{2}{5} + \frac{3}{4} =$	ON/C 2 a/b 5 + a/b 3 • 4)
		1 <u>-20</u> 23
		20
	CHARGE	1.15
$\sqrt{3} \times \sqrt{5} =$		
, U A V U =		
	CHANGE	3.872983346
sin 45 =	sin 45 =	<u>~2</u>
	CHANGE	0.707106781

ENGLISH

 $+ - \times \div$


	_			
5			$8^{-2} - 3^4 \times 5^2$! =
 3(5 + 2) = 	(2ndF) (CA)	21.		
() 3(3+2) = (2) 3 × 5 + 2 =	3 (5 + 2) = 3 × 5 + 2 =	17.		
③ (5 + 3) × 2 =	$(5 + 3) \times 2$			
\rightarrow (1)	2ndF	21.	LINE	
→ ②		17.		
→ ①		21.		
→ ³	2ndF)	16.		
			8 ³ =	
6 + -) X ÷ ()	(—) (Exp	$\sqrt{49} - \sqrt[4]{81}$	
45 + 285 ÷ 3 =	ON/C 45 + 285 (=	÷ 3 140.	LINE	
$\frac{18+6}{15-8} =$				
	<u>()</u> 15 <u>-</u> 8 <u>=</u> 42 (×) ($3\frac{3}{7}$	³ √27 =	
42 × -5 + 120 =	=	-90.	4! =	
$(5 \times 10^3) \div (4 \times 1)$	$10^{-3}) = 5 (Exp) 3 \div 4 (Exp) (-) 3 = 0$	1'250'000.	$_{10}P_3 =$	
7			₅ C ₂ =	
34 + <u>57</u> =	34 (+) 57 (=)	91.	500 × 25% =	:
		102.	120 ÷ 400 =	?%
45 <u>+ 57</u> =	45 =		500 + (500 ×	25%
<u>68 ×</u> 25 =	68 × 25 (=)	1'700.	400 – (400 ×	30%
<u>68 ×</u> 40 =	40 (=_)	2'720.	5-9 =	
8 <eng eng<="" td=""><td>\geq</td><td></td><td></td><td>θ=</td></eng>	\geq			θ=
6789=	ON/C) 6789 =	6'789.	DEG	
	(ALPHA) (ENG>)	6.789 e 03	RAD	
	(ALPHA) (ENG>)	0.006789 e 06	GRAD	
	(ALPHA) (ENG>) (ALPHA) (<eng) (<eng)<="" (alpha)="" td=""><td></td><td></td><td></td></eng)>			
		0.006789 e 06		
	(ALPHA) (CENG) (ALPHA) (CENG) (ALPHA) (CENG)	0.006789E06 6789.E00 6789000.E-03	DRG► 90° → [rad]	
9 (sin) (cos In) (log (y,x) (v)	(ALPHA) (CENG) (ALPHA) (CENG) (ALPHA) (CENG)	0.006789 e 06 6789. e 00		
$ \begin{array}{c} \text{In} \\ y^x \\ \sqrt{\end{array} $	$\begin{array}{c} (ALPHA) \subset ENG \\ (ALPHA) \subset ENG \\ \hline \\ (ALPHA) \subset ENG \\ \hline \\ (Dg_{\mu}X) \mathcal{C}^{X} \mathcal{C} 10^{X} \\ \hline \\ (\sqrt{2}) \sqrt{2} (1) mP_{T} \\ \hline \\ \hline \\ ONC (SET UP) 0 0 \end{array}$	$\begin{array}{c} 0.006789 \text{E}06 \\ \hline 6789.\text{E}00 \\ \hline 6789000.\text{E}-03 \\ \hline \pi \text{(hyp) arc-hyp)} \\ \hline \chi^{-1} \chi^{2} \chi^{3} \\ \pi \Gamma \% \text{(abs)} \end{array}$	Ø DRG▶ 90° → [rad] → [g]	
$ \begin{array}{c} \text{In} \\ y^x \\ \sqrt{\end{array} $	$\begin{array}{c} (ALPHA) & (ENG) \\ (ALPHA) & (ENG) \\ (ALPHA) & (ENG) \\ (Big_{a}, \chi) & (\mathcal{C}^{\chi}) & (\mathcal{C}^{\chi}) & (\mathcal{C}^{\chi}) \\ (big_{a}, \chi) & (\mathcal{C}^{\chi}) & (\mathcal{C}^{\chi}) & (\mathcal{C}^{\chi}) \\ (f_{a}, \chi) & (\mathcal{C}^{\chi}) & (f_{a}, \chi) \\ (f_{a}, \chi) & (f_{a}, \chi) & (f_{a}, \chi) & (f_{a}, \chi) \\ (f_{a}, \chi) & (f_{a}, \chi) & (f_{a}, \chi) & (f_{a}, \chi) \\ (f_{a}, \chi) & (f_{a}, \chi) & (f_{a}, \chi) & (f_{a}, \chi) \\ (f_{a}, \chi) & (f_{a$	$\begin{array}{c} 0.006789 \text{E}06 \\ \hline 6789.\text{E}00 \\ \hline 6789000.\text{E}-03 \\ \hline \pi (hyp) \text{ arc hyp} \\ \hline x^{-1} x^2 x^3 \\ \hline nCr \% abs \\ \hline \frac{\sqrt{3}}{2} \end{array}$	 (DRG) 90° → [rad] → [g] → [°] (ALPHA) (
$\begin{bmatrix} \text{In} \\ 0 \\ y^{\chi} \end{bmatrix} \begin{bmatrix} \log \\ \sqrt{2} \end{bmatrix}$ sin 60 [°] =	$\begin{array}{c} (ALPHA) \subset ENG \\ (ALPHA) \subset ENG \\ \hline \\ (ALPHA) \subset ENG \\ \hline \\ (Dg_{\mu}X) \mathcal{C}^{X} \mathcal{C} 10^{X} \\ \hline \\ (\sqrt{2}) \sqrt{2} (1) mP_{T} \\ \hline \\ \hline \\ ONC (SET UP) 0 0 \end{array}$	$0.006789E06$ $6789.E00$ $6789000.E-03$ $\frac{\pi}{NCr} = \frac{1}{NCr} = \frac{\sqrt{3}}{2}$ 0.866025403	$\begin{array}{c} \textcircled{0} & \fbox{0} \\ \hline \\ 90^{\circ} \rightarrow [rad] \\ \rightarrow [g] \\ \rightarrow [^{\circ}] \\ \hline \\ \textcircled{0} & \fbox{0} \\ \hline \\ 8 \times 2 \Rightarrow M \end{array}$	((RCL
$\begin{bmatrix} \text{In} \\ 0 \\ y^x \end{bmatrix} \begin{bmatrix} \text{log} \\ \end{bmatrix}$ sin 60 [°] =	$\begin{array}{c} \label{eq:alpha} (ENG) (ALPHA) (ENG) \\ \hline $	$\begin{array}{c} 0.006789 \text{E}06 \\ \hline 6789.\text{E}00 \\ \hline 6789000.\text{E}-03 \\ \hline \\ \hline \\ x^{-1} x^2 x^3 \\ nCr \% abs \\ \hline \\ \frac{\sqrt{3}}{2} \\ \hline \\ 0.866025403 \\ \hline \\ \frac{\sqrt{2}}{2} \\ \hline \end{array}$	 (DRG) 90° → [rad] → [g] → [°] (ALPHA) (((RCL
$\frac{\ln}{y^{x}} \frac{\log}{}$ sin 60 [°] = $\cos \frac{\pi}{4} [rad] =$	$\begin{array}{c} \text{ALPHA} \underbrace{\text{CENG}} \text{ALPHA} \underbrace{\text{CENG}} \\ \text{ALPHA} \underbrace{\text{CENG}} \\ \text{ALPHA} \underbrace{\text{CENG}} \\ \text{ALPHA} \underbrace{\text{CENG}} \\ \text{Big}_{\mu}X \underbrace{\mathcal{C}^{\chi}} \underbrace{\mathcal{C}} 10^{\chi} \\ \text{I} 10^{\chi} \\ \underbrace{\mathcal{C}^{\chi}} \underbrace{\mathcal{C}} 10^{\chi} \\ \underbrace{\mathcal{C}^{\chi}} \underbrace{\mathcal{C}} 10^{\chi} \\ \underbrace{\mathcal{C}^{\chi}} \underbrace{\mathcal{C}} 10^{\chi} \\ \underbrace{\mathcal{C}^{\chi}} \underbrace{\mathcal{C}} 10^{\chi} \\ \underbrace{\mathcal{C}^{\chi}} 10^{\chi} \\ 10^{\chi} \\ \underbrace{\mathcal{C}^{\chi}} 10^{\chi} \\ 10^{\chi}$	$0.006789E06$ $6789.E00$ $6789000.E-03$ $\frac{\pi}{NCr} = \frac{1}{NCr} = \frac{\sqrt{3}}{2}$ 0.866025403	$\begin{array}{c} \textcircled{0} & \fbox{0} \\ \hline \\ 90^{\circ} \rightarrow [rad] \\ \rightarrow [g] \\ \rightarrow [^{\circ}] \\ \hline \\ \textcircled{0} & \fbox{0} \\ \hline \\ 8 \times 2 \Rightarrow M \end{array}$	 ((
$\frac{\ln}{y^{x}} \frac{\log}{}$ sin 60 [°] = $\cos \frac{\pi}{4} [rad] =$	$\begin{array}{c} \text{ALPHA} \text{(ENG} \text{(ALPHA} \text{(ENG} \\ \\ \text{(ALPHA} \text{(ENG} \\ \\ \text{(Ing., X)} \begin{array}{c} \mathcal{C}^{X} \mathcal{C}^{X} \begin{array}{c} \mathcal{C} \\ \mathcal{C}^{X} \mathcal{C}^{X} \\ $	$\begin{array}{c} 0.006789 \text{E}06 \\ \hline 6789.\text{E}00 \\ \hline 6789000.\text{E}-03 \\ \hline \\ \hline \\ x^{-1} x^2 x^3 \\ nCr \% abs \\ \hline \\ \frac{\sqrt{3}}{2} \\ \hline \\ 0.866025403 \\ \hline \\ \frac{\sqrt{2}}{2} \\ \hline \end{array}$	$ \begin{array}{c} $	 (; RCL
$\frac{\ln}{y^{x}} \frac{\log}{}$ $\sin 60 [^{\circ}] =$ $\cos \frac{\pi}{4} [rad] =$	$\begin{array}{c} \text{ALPHA} \underbrace{\text{CENG}} \\ \text{(log_{a}, X)} \underbrace{\mathcal{O}^{X}} \mathcal{O} 10^{X} \\ \text{(log_{a}, X)} \underbrace{\mathcal{O}^{X}} \mathcal{O} 0 \\ \text{(log_{a}, X)} \underbrace{\mathcal{O}^{X}} \mathcal{O} 10^{X} \\ \text{(log_{a}, X)} \underbrace{\mathcal{O}^{X}} \mathcal{O} 0 \\ \text{(log_{a}, X)} \underbrace{\mathcal{O}^{X}} \mathcal{O} 10^{X} \\ \text{(log_{a}, X)} \underbrace{\mathcal{O}^{X}} \mathcal{O} 0 \\ \ \mathcalO 0 \\ \text{(log_{a}, X)} \underbrace{\mathcal{O}^{X}} \mathcalO 0 \\ \ \mathcalO 0 \\$	$0.006789E06$ $6789.E00$ $6789000.E-03$ $\frac{\pi}{NCr} \frac{hyp}{\%} \frac{archyp}{x^3}$ $\frac{\sqrt{3}}{2}$ 0.866025403 $\frac{\sqrt{2}}{2}$ 0.707106781	$(b) (DRGP)$ $90^{\circ} \rightarrow [rad]$ $\rightarrow [g]$ $\rightarrow [^{\circ}]$ $(aLPHA) (1)$ $8 \times 2 \Rightarrow M$ $24 \div (8 \times 2) =$ $(8 \times 2) \times 5 =$	((
$\frac{\ln}{y^{x}} \frac{\log}{\sqrt{x}}$ $\sin 60 \ [^{\circ}] =$ $\cos \frac{\pi}{4} \ [rad] =$ $\tan^{-1}1 \ [g] =$	$\begin{array}{c} (ALPHA) \langle ENG \\ (ALPHA) \langle ENG \\ \hline \\ (ALPHA) \langle ENG \\ \hline \\ (ALPHA) \langle ENG \\ \hline \\ (Bg_{\mu}, \chi) (\mathcal{C}^{\chi}) (C$	$0.006789E06$ $6789.E00$ $6789000.E-03$ $\frac{\pi}{NCr} \frac{hyp}{\%} \frac{archyp}{x^3}$ $\frac{\sqrt{3}}{2}$ 0.866025403 $\frac{\sqrt{2}}{2}$ 0.707106781	$(b) (DRG)$ $90^{\circ} \rightarrow [rad]$ $\rightarrow [g]$ $\rightarrow [^{\circ}]$ $(alcorred)$ $8 \times 2 \Rightarrow M$ $24 \div (8 \times 2) =$ $(8 \times 2) \times 5 =$ $(8 \times 2) \times 5 =$ $0 \Rightarrow M$	((((() () () () () () () () () () () (
$\frac{\ln}{y^{x}} \frac{\log}{\sqrt{x}}$ $\sin 60 \ [^{\circ}] =$ $\cos \frac{\pi}{4} \ [rad] =$ $\tan^{-1}1 \ [g] =$ $(\cosh 1.5 + \sinh 1.5)$	$\begin{array}{c} (ALPHA) \langle ENG \\ (ALPH$	$0.006789E06$ $6789.E00$ $6789000.E-03$ $\frac{\pi}{NCr} \frac{hyp}{\%} \frac{archyp}{x^3}$ $\frac{\sqrt{3}}{2}$ 0.866025403 $\frac{\sqrt{2}}{2}$ 0.707106781	$(b) (DRGP)$ $90^{\circ} \rightarrow [rad]$ $\rightarrow [g]$ $\rightarrow [^{\circ}]$ $(a) (a) ($	((((() () () () () () () () () () () (
$\boxed{ [n] \\ y^x } \boxed{ \log }$ $\sin 60 \ [^\circ] =$ $\cos \frac{\pi}{4} \ [rad] =$ $\tan^{-1}1 \ [g] =$ $(\cosh 1.5 + \sinh 1.$	$\begin{array}{c} (ALPHA) & (ENG) \\ (ALPHA) & (ENG) \\ (ALPHA) & (ENG) \\ (Big_{\mu}, \chi) & (\mathcal{C}^{\chi}) & (\mathcal{C}) & (In^{-1}) \\ (Dg_{\mu}, \chi) & (\mathcal{C}^{\chi}) & (\mathcal{C}) & (In^{2}) \\ (M, \mathcal{C}) & (\mathcal{C}) & (\mathcal{C}) & (In^{2}) \\ (M, \mathcal{C}) & (\mathcal{C}) & (\mathcal{C}) & (In^{2}) \\ (M, \mathcal{C}) & (\mathcal{C}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (\mathcal{C}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{2}) & (In^{2}) & (In^{2}) & (In^{2}) & (In^{2}) \\ (M, \mathcal{C}) & (In^{2}) & (In^{$	$\begin{array}{c} 0.006789 \text{E}06\\ \hline 6789.\text{E}00\\ \hline 6789000.\text{E}-03\\ \hline \\ \hline$	() () () () () () () ()	(; (; (; (;
$\frac{\ln}{y^{x}} \frac{\log}{\sqrt{2}}$ $\sin 60 [^{\circ}] =$ $\cos \frac{\pi}{4} [rad] =$ $\tan^{-1} 1 [g] =$ $(\cosh 1.5 + \sinh 1.5 + 1.5 + \sinh 1.5 + 1.5 + \sinh 1.5 + 1.5 + 10 1.5 + 10 1.5 + 10 1.5 + 10 1.5 + 10 1.5 $	$\begin{array}{c} (ALPHA) (ENG (ALPHA) (ENG \\ (ALPHA) (ENG \\$	$\begin{array}{c} 0.006789 \mathbf{E} 0.6 \\ \hline 6789.\mathbf{E} 0.0 \\ \hline 6789000.\mathbf{E} - 0.3 \\ \hline \pi \text{(hyp)} \text{(arc hyp)} \\ \hline x^{-1} x^2 x^3 \\ \hline nCr \% \text{(abs)} \\ \hline \frac{\sqrt{3}}{2} \\ \hline 0.866025403 \\ \hline \frac{\sqrt{2}}{2} \\ \hline 0.707106781 \\ \hline 50. \\ \hline 20.08553692 \\ \hline \end{array}$	$\begin{array}{c c} \hline \hline$	(((((((((())))) ())) ())) ()))
$\frac{\ln}{y^{x}} \frac{\log}{\sqrt{2}}$ $\sin 60 [^{\circ}] =$ $\cos \frac{\pi}{4} [rad] =$ $\tan^{-1} 1 [g] =$ $(\cosh 1.5 + \sinh 1.5 + 1.5 + \sinh 1.5 + 1.5 + \sinh 1.5 + 1.5 + 10 1.5 + 10 1.5 + 10 1.5 + 10 1.5 + 10 1.5 $	$\begin{array}{c} (ALPHA) < (ENG \\ (ALPHA) < (ENG \\$	$\begin{array}{c} 0.006789 \mathbf{E}06 \\ \hline 6789.\mathbf{E}00 \\ \hline 6789000.\mathbf{E}-03 \\ \hline \\ $	() () () () () () () ()	(((((((((())))) ())) ())) ()))
$\boxed{ [n] \\ y^x } \boxed{ \log y^x } \sqrt{ (\sqrt{2})^x } $ $\sin 60 [^\circ] = $ $\cos \frac{\pi}{4} [rad] = $ $\tan^{-1} 1 [g] = $ $(\cosh 1.5 + \sinh 1.5 + 1.5 + \sinh 1.5 + \hbar 1.5 + \sinh 1.5 + \sinh 1.5 + \sinh 1.5 + \hbar 1.5 + \sinh 1.5 + \hbar 1.5 + \hbar 1.5 + \hbar 1.$	$\begin{array}{c} (ALPHA) (ENG \\ (ALPHA) (ENG \\$	$\begin{array}{c} 0.006789 \text{E}06\\ \hline 6789.\text{E}00\\ \hline 6789000.\text{E}-03\\ \hline \pi & \text{hyp} & \text{archyp}\\ \hline \underline{x^{-1}} & \underline{x^2} & \underline{x^3}\\ \hline nCr & \% & \text{abs}\\ \hline \underline{\sqrt{3}} & \underline{\sqrt{3}}\\ \hline 0.866025403\\ \hline \underline{\sqrt{2}} & 2\\ \hline 0.707106781\\ \hline 50. \\ \hline 20.08553692\\ \hline 0.895879734\\ \hline 2.995732274\\ \hline 1.698970004\\ \hline \end{array}$	$\begin{array}{c c} \hline \hline$	RCL (((((() () () () () () ()
$\boxed{ [n] \\ y^x } \boxed{ \log y^x } \sqrt{ (\sqrt{2})^x } $ $\sin 60 [^\circ] = $ $\cos \frac{\pi}{4} [rad] = $ $\tan^{-1} 1 [g] = $ $(\cosh 1.5 + \sinh 1.5 + 1.5 + \sinh 1.5 + \hbar 1.5 + \sinh 1.5 + \sinh 1.5 + \sinh 1.5 + \hbar 1.5 + \sinh 1.5 + \hbar 1.5 + \hbar 1.5 + \hbar 1.$	ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG Image: Alpha Ceng	$\begin{array}{c} 0.006789 \text{E}06\\ \hline 6789.\text{E}00\\ \hline 6789000.\text{E}-03\\ \hline \\ \hline$	() () () () () () () ()	RCL (((((() () () () () () ()
$\boxed{ \text{ In } 0 \text{ g} } \sqrt{3} \text{ sin 60 } [\circ] = \frac{\pi}{4} \text{ [rad]} = \frac{\pi}{4} \text{ [rad]} = \frac{\pi}{4} \text{ [rad]} = \frac{\pi}{11} \text{ [g]} = $	ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG (ALPHA CENG (BUDK) (ALPHA	$\begin{array}{c} 0.006789 \text{E}06\\ \hline 6789.\text{E}00\\ \hline 6789000.\text{E}-03\\ \hline \\ \hline$	() () () () () () () ()	RCL (((((() () () () () () ()
$\boxed{ \text{ In } 0 \text{ g} } \sqrt{3} \text{ sin 60 } [\circ] = \frac{\pi}{4} \text{ [rad]} = \frac{\pi}{4} \text{ [rad]} = \frac{\pi}{4} \text{ [rad]} = \frac{\pi}{11} \text{ [g]} = $	ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG Itan Sin ⁻¹ COS ⁻¹ Itan Sin ⁻¹ COS ⁻¹ Ian ⁻¹ Itan Sin ⁻¹ COS ⁻¹ Ian ⁻¹ Itan SETUP 0 1 Impr ONCC SETUP 0 1 Impr ONC SETUP 0 1 Impr ONC SETUP 0 2 Impr SETUP 0 0 0 3 In 2 0 1 1 1 <t< td=""><td>$\begin{array}{c} 0.006789 \text{E}06\\ \hline 6789.\text{E}00\\ \hline 6789000.\text{E}-03\\ \hline \\ \hline$</td><td>() () () () () () () ()</td><td>RCL (((((() () () () () () ()</td></t<>	$\begin{array}{c} 0.006789 \text{E}06\\ \hline 6789.\text{E}00\\ \hline 6789000.\text{E}-03\\ \hline \\ \hline$	() () () () () () () ()	RCL (((((() () () () () () ()
$\frac{ n }{y^{x}} \frac{\log}{\sqrt{2}}$ $\sin 60 [^{\circ}] =$ $\cos \frac{\pi}{4} [rad] =$ $\tan^{-1} 1 [g] =$ $(\cosh 1.5 + \sinh 1.$ $\tanh^{-1} \frac{5}{7} =$ $\ln 20 =$ $\log 50 =$ $\log_{2} 16384 =$ (INE) $e^{3} =$ $1 \div e =$	ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG Image: Construction of the second seco	$\begin{array}{c} 0.006789 \text{E}06\\ \hline 6789.\text{E}00\\ \hline 6789000.\text{E}-03\\ \hline \\ \hline$	() () () () () () () ()	== ⇒ M1 - 250
$\boxed{\text{In}} \underbrace{\log}_{y^{\chi}} \underbrace{\log}_{\sqrt{2}}$ $\sin 60 [^{\circ}] =$ $\cos \frac{\pi}{4} [\text{rad}] =$ $\tan^{-1}1 [\text{g}] =$ $(\cosh 1.5 + \sinh 1.$ $\tan^{-1} \frac{5}{7} =$ $\ln 20 =$ $\log_2 16384 =$ $\boxed{\text{LNE}}$ $e^3 =$ $1 \div e =$ $10^{1.7} =$	ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG (ALPHA CENG (ALPHA<	$\begin{array}{r} 0.006789 \mathbf{E} 86 \\ \hline 6789.\mathbf{E} 00 \\ \hline 6789000.\mathbf{E} - 03 \\ \hline \pi & \text{hyp} & \text{archyp} \\ \hline \underline{x^{-1}} & \underline{x^2} & \underline{x^3} \\ \hline nCr & \% & \text{abs} \\ \hline \underline{\sqrt{2}} & \underline{\sqrt{3}} \\ \hline 0.866025403 \\ \hline \underline{\sqrt{2}} \\ \hline 0.866025403 \\ \hline \underline{\sqrt{2}} \\ \hline 0.707106781 \\ \hline 50. \\ \hline 20.08553692 \\ \hline 0.895879734 \\ \hline 2.995732274 \\ \hline 1.698970004 \\ \hline 84 = 14. \\ \hline 84 & 14. \\ \hline 20.08553692 \\ \hline 0.367879441 \\ \hline 50.11872336 \\ \hline \end{array}$	() () () () () () () ()	== ⇒ M1 - 250 ÷(A)
$\begin{bmatrix} \text{In} \\ yx \\ y$	ALPHA CENG ALPHA CENG ALPHA CENG ALPHA CENG Image: Construction of the second seco	$\begin{array}{c} 0.006789 \text{E}06\\ \hline 6789.\text{E}00\\ \hline 6789000.\text{E}-03\\ \hline \\ \hline$	() () () () () () () ()	= - 250 (A) ÷ (A)

$-3^{4} \times 5^{2}$	2 =	$ \begin{array}{c} 8 y^{\chi} (-) \\ 3 y^{\chi} 4 1 \\ \mathbf{x}^2 = \\ \end{array} $		$024 \frac{63}{64}$
		CHANGE		<u>129599</u> 64
		(CHANGE)	-2'024.9	
E		8 <u>y</u> x () ;		
_		$3 y^x 4 \times x^2 =$	〕5 _2'024.9	984375
		CHANGE	-20241	-63-64
		CHANGE	-1295	599r64
=		8 (2ndF) (X ³)	=	512.
$\overline{\theta} = 4\sqrt{81}$	=	√ 49 ► 4 2ndF ∛) — 81 =	4.
E		√ 49 - 2ndF ∛ 81) 4	4.
7=		2ndF) 3 27		3.
:		4 (2ndF) n! (=	24.
3 =		10 (2ndF) (nPr	3 =	720.
=		5 2ndF nCr	2 =	10.
× 25% =	:	500 × 25	5 (2ndF) %	125.
÷ 400 =	?%	120 ÷ 46	0 (2ndF) %	30.
+ (500 ×	25%) =	500 + 25	5 (2ndF) (%)	625.
– (400 ×	30%) =	400 - 30) (2ndF) (%)	280.
_9 =		2ndF abs 5 (- 9 =	4.
	$\theta = sin^{-1}$	x, $\theta = \tan^{-1}x$	$\theta = \cos^{-1}x$	
G		$\leq \theta \leq 90$	$0 \le \theta \le 180$	
D		$\leq \theta \leq \frac{\pi}{2}$	$0 \le \theta \le \pi$	
AD	-100	$\leq \theta \leq 100$	$0 \le \theta \le 200$	
DRG►				
\rightarrow [rad]	ON/C	90 (2ndF) (DRG))	$\frac{1}{2}\pi$
[g]	2ndF)	DRG►		100.
°]	(2ndF)	DRG		90.
(ALPHA)	RCL) STO	D M+ M-	ANS D1 D2	D3
$2 \Rightarrow M$		ON/C) 8 ×) 2 (STO) M	16.
+ (<u>8 × 2</u>) :	=	24 ÷ Alf	PHA) M =	$1\frac{1}{2}$
				80.
<u>(2)</u> × 5 =				
M				
6150 × 3 =			5 <u>M+</u>	
	- 250 ⇒ M ₂		× 5 (2ndF) %	250.
<i>I</i> ₁₂ × 5%		2ndF M-		
/ = 2				665.
$\frac{1}{6} = 2\frac{2}{5}$	·(A)		4 + 6	2-2-5
(A) + 60	÷ (A) =		ANS + 60	32-1-5
n ^{−1} ⇒ D1		STO D1	2ndF) (arc hyp) (sin)	
$1^{-1}0.5 =$		D1 0.5	= 0.4812	11825
4 = ANS	ON	© 6 + 4 (10.
S + 5 =	(+	5 =		15.
2 = ANS	8 (× 2 =		16.
$S^2 =$		2 =		256.

$3\frac{1}{2} + \frac{4}{3} = \frac{ON}{+}$	/C 3 2ndF (ab/c) 1 (a/b) 4 ▼ 3 (▼ 2 ►	$- 4\frac{5}{6}$
CHAN			<u>29</u> 6
CHẠN	GE		4.8333333333
LINE 3 (a/b 1 a/b 2 +	4 a/b 3	= 4r5r6
CHAN	GE		29-6
CHẠN	GE		4.8333333333
$4 r 5 r 6 = 4 \frac{5}{6}$			
•		NEG	OT AND OR
DEC (25) \rightarrow BIN	ON/C 2ndF +DEC 2 2ndF +BIN	25 BIN	11001
HEX (1AC)	(2ndF) HEX 1 A C		
\rightarrow BIN	(2ndF) (+BIN)	BIN	110101100
\rightarrow PEN	(2ndF) (>PEN)	PEN	3203
\rightarrow OCT	2ndF +OCT	OCT	654
\rightarrow DEC	(2ndF) (DEC)		428.
BIN (111) \rightarrow NEG	2ndF (*BIN) (NEG) 111 (=	BIN	1111111001
1011 AND 101 = [BIN]	2ndF (*BIN) 1011 (AND) 101 (=	BIN	1
5A OR C3 = [HEX] 2ndF ►HEX 5 A O C 3 =	HEX	DB
NOT 10110 = [BIN	I] 2ndF) ←BIN (NOT) 10110 =	BIN	1111101001
24 XOR 4 = [OCT	2ndF + OCT 24 XX 4 =	OCT	20
B3 XNOR 2D = [HEX]	2ndF → HEX B 3 (XN 2 D =	OR	FFFFFFFF61
\rightarrow DEC	(2ndF) (+DEC)		-159
15 (D°M′S) (↔DEG)			
7°31'49.44" → [10		D°M'S	- 663
	49.44 (2ndF) +	►DEG)	7 <mark>663</mark> 1250
123.678 → [60] 3h 30m 45s +	49.44 (2ndF) ↔ 123.678 (2ndf) 3 (DTWTS) 30 (DTWTS)	<u>►DEG</u>	
123.678 → [60] 3h 30m 45s +	49.44 (2ndF) ↔ 123.678 (2ndf) 3 (DTWTS) 30 (DTWTS)	•DEG F) •••DEG	1250
123.678 → [60] 3h 30m 45s + 6h 45m 36s = [60] 1234°56'12" +	49.44 (2ndF) ← 123.678 (2nd 3 (2nds) 30 (2nds) + 6 (2nds) 45 36 = 1234 (2nds) 56 12 + 0 (2nds)	+DEG F) ←+DEG 5) 45 5) D™S D™S 2) 0	'1250 123°40'40.8" 10°16'21."
123.678 → [60] 3h 30m 45s + 6h 45m 36s = [60] 1234°56'12" + 0°0'34.567" = [60] 3h 45m - 1.69h	49.44 (2ndF) ← 123.678 (2nd 3 (DMS) 30 (DMS + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 34.567 3 (DMS) 45 -	+DEG F ++DEG 5 45 5 DTM'S 0 = 1.69	' 1250 123°40'40.8" 10°16'21." 1234°56'47."
$123.678 \rightarrow [60]$ 3h 30m 45s + 6h 45m 36s = [60] 1234°56'12" + 0°0'34.567" = [60] 3h 45m - 1.69h = [60]	49.44 (2ndF) + 123.678 (2nd 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 45 (DMS) 34.567 3 (DMS) 45 - = (2ndF) +DEG] (sin 62 (DMS) 4	+DEG F ←+DEG 3 45 5 DFM/S 0 0 = 1.69	' 1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36."
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56'12'' + \\0^{\circ}0'34.567'' = [60]$ $3h \ 45m - 1.69h \\= [60]$ $\sin 62^{\circ}12'24'' = [10]$	49.44 (2ndF) (123.678 (2ndf) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 12 + 0 (DMS) 12 + 0 (DMS) 36 (2 (0MS) 45) = (2ndF) (+000) (DMS) 24 (2 (2 (0MS)) 45) (DMS) 24 (2 (0MS)) 45) (DMS)	+DEG F ←+DEG 3 45 5 DFM/S 0 0 = 1.69	' 1250 123°40'40.8" 10°16'21." 1234°56'47."
123.678 → [60] 3h 30m 45s + 6h 45m 36s = [60] 1234°56'12" + 0°0'34.567" = [60] 3h 45m - 1.69h = [60] 3in 62°12'24" = [10 for (r = r) → xy f(x = 6) / $r = r$	49.44 (2ndF) (123.678 (2ndf) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 12 + 0 (DMS) 12 + 0 (DMS) 36 (2 (DMS) 45 = (2ndF) (+ DEG) (MS) 24 = (MS) 24 (2 (MS) 4) (MS) 24 (2 (MS	+DEG F ←+DEG 3 45 5 DFM/S 0 0 = 1.69	'1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56'12'' + \\0^{\circ}0'34.567'' = [60]$ $3h \ 45m - 1.69h = [60]$ $sin \ 62^{\circ}12'24'' = [10]$ $(x = 6) \qquad (x = 0) \qquad (x = 0$	49.44 (2ndF) ← 123.678 (2nd) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 56 12 + 0 (DMS) 45 (- = (2ndF) ← DEG (x,y) (x,y) (NMC) 6 (x,y) 4 (2ndF) ← 70	•DEG F ← + DEG 3 45 5 0 MS 3 0 = 1 1.69 1 2 F: 0:	(1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753
123.678 → [60] 3h 30m 45s + 6h 45m 36s = [60] 1234°56'12" + 0°0'34.567" = [60] 3h 45m - 1.69h = [60] 3in 62°12'24" = [10 for (r = r) → xy f(x = 6) / $r = r$	49.44 (2ndF) ← 123.678 (2nd) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 56 12 + 0 (DMS) 56 12 + 0 (DMS) 56 (12 + 0 (DMS) 56 12 + 0 (DMS) 56 (12	•DEG F ← DEG 3 45 5 DTMS 0 0 = 1 1.69 1 2 r:	'1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56^{\circ}12" + \\0^{\circ}0^{\circ}34.567" = [60]$ $3h \ 45m - 1.69h = [60]$ $3h \ 45m - 1.69h = [60]$ $(b) \ (\rightarrow r\theta) \ (\rightarrow xy)$ $(x = 6 \ (r = \\y = 4 \ \rightarrow (r = \\\theta =]6]$ $(x = 14 \ (h = 16) \ (h = \\y = 4 \ (h = \\y = 4 \ (h = \\y = \\$	49.44 (2ndF) (123.678 (2nd) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 12 + 0 (DMS) 12 + 0 (DMS) 36 (2 (DMS) 45 = (2ndF) (++)(20) (X,y) (X	PEG F ← PEG 3 45 5 DMS 0 0 = 1 .69 1 2 X:	'1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56^{\circ}12" + \\0^{\circ}0'34.567" = [60]$ $3h \ 45m - 1.69h = [60]$ $3h \ 45m - 1.69h = [60]$ $(x = 6) (\rightarrow xy)$ $(x = 6) (x = y) (x = y)$ $(x = y) (x = y) (x = y) ($	49.44 (2ndF) ← 123.678 (2nd) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0	PEG F ← PEG 3 45 5 DMS 0 0 = 1 .69 1 2 X:	(1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532 0.0
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56^{\circ}12^{\circ} + \\0^{\circ}0^{\circ}34.567^{\circ} = [60]$ $3h \ 45m - 1.69h = \\[60]$ $3h \ 45m - 1.69h = \\[60]$ $(x = 6 \\ y = 4 \rightarrow (r = \\ \theta = 10)$ $(x = 6 \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ y = (r = \\ y = 4 \rightarrow (r = \\ y = ($	49.44 (2ndF) ← 123.678 (2nd) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0	•DEG F ← DEG 3 45 5 DMS 0 0 = 1 1.69 1 2 7: 0: X: Y:	(<u>1250</u> 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56^{\circ}12^{\circ} + \\0^{\circ}0^{\circ}34.567^{\circ} = [60]$ $3h \ 45m - 1.69h = \\[60]$ $3h \ 45m - 1.69h = \\[60]$ $(x = 6 \\ y = 4 \rightarrow (r = \\ \theta = 10)$ $(x = 6 \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ \theta = 36 \ [^{\circ}] \rightarrow (x = \\ y = 4 \rightarrow (r = \\ y = (r = \\ y = 4 \rightarrow (r = \\ y = ($	$49.44 (2ndF) \leftarrow 123.678 (2nd) \\ 123.678 (2nd) \\ + 6 (DWS) 30 (DWS) \\ + 6 (DWS) 45 \\ 36 = 1234 (DWS) 56 \\ 12 + 0 (DWS) 56 \\ 12 + 0 (DWS) 34.567 \\ 3 (DWS) 45 = 2ndF (+) 0 (DWS) \\ 12 + 0 (DWS) 24 = 10 \\ (C,y) \\ (C,y)$	•DEG F ← DEG 3 45 5 DMS 0 0 = 1 1.69 1 2 7: 0: X: Y:	(<u>1250</u> 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532 0.0
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56'12'' + \\0^{\circ}0'34.567'' = [60]$ $3h \ 45m - 1.69h = [60]$ $sin \ 62^{\circ}12'24'' = [10]$ $(x = 6 \ -) \ (x = 0) \ (x$	49.44 (2ndF) ← 123.678 (2nd) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 34 (DMS) 56 12 4 (DMS) 56 12 4 (DMS) 56 12 34 (DMS) 56 12 34 (DMS) 56 12 34 (DMS) 56 12 34 (DMS) 56 (DMS) 45 (DMS) (DMS) 24 = (x,y) (NMC) 6 (c,y) 4 2 (DMC) (SET (P) 1) 5 ÷ 9 =	•DEG F ← DEG 3 45 5 DMS 0 0 = 1 1.69 1 2 7: 0: X: Y:	(1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532 0.0 0.0 5 9 0.6 5.0
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56'12'' + \\0^{\circ}0'34.567'' = [60]$ $3h \ 45m - 1.69h = [60]$ $sin \ 62^{\circ}12'24'' = [10]$ $(x = 6 \ -) \ (x = 0) \ (x$	$49.44 (2ndF) \leftarrow 123.678 (2nd)$ $3 (DMS) 30 (DMS) + 6 (DMS) 45 (2nd)$ $1234 (DMS) 56 (2nd) + 0 (DMS) 34.567 (2nd) + 0 (DMS) 34.567 (2nd) + 0 (DMS) 24 (2nd) + 0 (DMS) 24 (2nd) + 0 (2nd) +$	•DEG F ← DEG 3 45 5 DMS 0 0 = 1 1.69 1 2 7: 0: X: Y:	(<u>1250</u> 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532 0.0 0.0 <u>5</u> 9 0.6
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56'12'' + \\0^{\circ}0'34.567'' = [60]$ $3h \ 45m - 1.69h = [60]$ $sin \ 62^{\circ}12'24'' = [10]$ $(x = 6 \ -) \ (x = 0) \ (x$	49.44 (2ndF) ← 123.678 (2ndi 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 56 12 + 0 (DMS) 56 12 + 0 (DMS) 45 = (2ndF) ← DEG (X,y) (NC 6 (X,y) 4 = 14 (X,y) 36 = 2ndF) ← xy (NC (SETUP) 1 (C) 5 ÷ 9 = (X, 9 = +1) (X, 9 = +1)	•DEG F ← DEG 3 45 5 DMS 0 0 = 1 1.69 1 2 7: 0: X: Y: 	(<u>1250</u> 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532 0.0 0.0 5 9 0.6 5.0 5 9 0.6
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56^{\circ}12^{"} + \\0^{\circ}0^{\circ}34.567^{"} = [60]$ $3h \ 45m - 1.69h = \\[60]$ $3h \ 45m - 1.69h = \\[60]$ $(\bullet r \theta) (\bullet xy)$ $(x = 6 \ 0 = [r^{\circ}]$ $(y = 4 \ 0 = [r^{\circ}] \rightarrow (x)$ $(x = 6 \ 0$	$49.44 (2ndF) \leftarrow 123.678 (2nd)$ $3 (DMS) 30 (DMS) + 6 (DMS) 45 (2nd)$ $1234 (DMS) 56 (2nd) + 0 (DMS) (2nd) + 0$	•DEG F ← DEG 3 45 5 DMS 0 0 = 1 1.69 1 2 7: 0: X: Y: 	(<u>1250</u> 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532 0.0 6.0 5.0 5.0 5.0 5.0
$123.678 \rightarrow [60]$ $3h \ 30m \ 45s + \\6h \ 45m \ 36s = [60]$ $1234^{\circ}56^{\circ}12^{\circ} + \\0^{\circ}0^{\circ}34.567^{\circ} = [60]$ $3h \ 45m - 1.69h = \\[60]$ $sin \ 62^{\circ}12^{\circ}24^{\circ} = [10]$ $(x = 6 \ -xy)$	49.44 (2ndF) + 123.678 (2ndf) + 6 (5nms) 30 (5ms) 45 (2ndf) + 6 (5nms) 45 (2ndf) + 1234 (5ms) 56 (2ndf) + 1234 (5ms) 5 (2ndf) + 1234 (2ndf) +	•DEG F ← DEG 3 45 5 DMS 0 0 = 1 1.69 1 2 7: 0: X: Y: 	(1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532 0.0 0.0 59 0.6 59 0.6 35
$\begin{pmatrix} x = 6 \\ y = 4 \rightarrow \begin{pmatrix} r = \\ \theta = \end{bmatrix} (x - 1)^{n}$ $\begin{pmatrix} r = 14 \\ \theta = 36 \\ 0 \end{bmatrix} \rightarrow \begin{pmatrix} x \\ y \end{pmatrix}$ (MDF)	49.44 (2ndF) ← 123.678 (2nd) 3 (DMS) 30 (DMS) + 6 (DMS) 45 36 = 1234 (DMS) 56 12 + 0 (DMS) 45 12 + 0 (DMS) 45 (2 + 0	•DEG F ← DEG 3 45 5 DMS 0 0 = 1 1.69 1 2 7: 0: X: Y: 	(1250 123°40'40.8" 10°16'21." 1234°56'47." 2°3'36." 0.884635235 7.211102551 33.69006753 11.32623792 8.228993532 0.0 0.0 5 9 0.6 5 9 0.6 3 5 9 0.6

(ON/C) 2 3 (2ndF) (int÷) 5	Q: 4. R: 3.
9.5 (2ndF) (int÷) 4	Q: 2. R: 1.5
() 32 (2ndF) (int÷) () 5 =	Q: 6. R: -2.
ON/C 12210 =	12'210.
(2ndF) (P.FACT)	2×3×5×11×37
(2ndF) (P.FACT)	12'210.
1234567 =	1'234'567.
	127x(9721)
	= 9.5 (2ndF (int÷) 4 = (→ 32 (2ndF (int÷) (→ 5 = 0NC 12210 = (2ndF (PFACT) (2ndF (PFACT))

MODE (STAT) INS-D

DATA - 95 80 80	MODE 1 95 ENTER 80 ENTER 50 ENTE			3
75 75 75 50	↑ 37 45 5		FRQ 3 1	
	(DATA)		Stat 0[SD	^{)]} 0.
	(ALPHA) (STAT)	$\begin{array}{rcl}n & = \\ \overline{x} & = \\ sx & = \\ \downarrow s^2 x & = \end{array}$	75.7142 13.3636	0621
		$\uparrow \sigma x = \sigma^2 x = \Sigma x = \downarrow \Sigma x^2 = \Box x$	153.061	
		$\uparrow xmin = \\ Q_1 = \\ Med = \\ \downarrow Q_3 = \\ \downarrow$		50. 75. 75. 80.
		$\uparrow xmax =$		95.
$\frac{(95-\overline{x})}{sx} \times 10 + 50 =$	ON/C (95 (ALPHA) (STAT) (2) (ALPHA) (STAT) (2) (ALPHA) (STAT) (2) (X) 10 (+)	5 — 1 2 50 =	64.4321	0706

та —	MODE	1 1 2	(x,y) 5 (x,y)	2 (ENTER)	24
у	12 (x,y)	24 ENTER	21 (x,y) 46	(x,y) 3 EN	TER
5 5	15 <u>(x,y)</u>	25 ENTER			
5					
24	^	Х	Y	FRQ	

	2			BIN: 100000000 ≤ <i>x</i> ≤ 1111111111	For Canada only :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Function Fonction Funktion Función Funzioni Funktion	Dynamic range Plage dynamique zulässiger Bereich Rango dinámico Campi dinamici Definitionsområde	NOT	$\begin{array}{c} 0 \leq x \leq 111111111\\ {\sf PEN:} \ 222222223 \leq x \leq 444444444\\ 0 \leq x \leq 2222222221\\ {\sf OCT:} \ 4000000000 \leq x \leq 777777777\\ 0 \leq x \leq 3777777777\\ {\sf HEX:} \ {\sf FDABF41C01} \leq x \leq {\sf FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$	For warranty information, please see http://www.sharp.ca/support-product-downloads.aspx Pour le Canada seulement : Pour en lire plus sur la garantie, visitez le http://www.sharp.ca/support-product-downloads.aspx
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Funktio sin x , cos x , tan x	Deg: $ x < 10^{10}$ (tan $x: x \neq 90(2n - 1))^*$ RAD: $ x < \frac{\pi}{180} \times 10^{10}$ (tan $x: x \neq \frac{\pi}{2}(2n - 1))^*$	NEG	$0 \le x \le 2540BE3FE$ BIN: 100000001 \le x \le 11111111111 $0 \le x \le 1111111111$ PEN: 2222222223 \le x \le 4444444444 $0 \le x \le 2222222222$ OCT: 40000000001 \le x \le 77777777777777777777777777777777	For Australia / New Zealand only : For warranty information please see <u>www.sharp.net.au</u>
$\begin{array}{c} a + bx \\ a = 1.050261097 \\ b = 1.826044386 \\ r = 0.995176343 \end{array}$	$\sin^{-1}x$, $\cos^{-1}x$	GRAD: $ x < \frac{10}{9} \times 10^{10}$ (tan x: $ x \neq 100(2n - 1))^*$		$0 \le x \le 377777777$ HEX: FDABF41C01 $\le x \le$ FFFFFFFFF $0 \le x \le 2540$ BE3FF entier / ganze Zahlen / entero / intero / okonaisluk	
$\boxed{\text{ON/C}} \stackrel{\text{ALPHA}}{=} \hat{\Sigma} x^4 = 654'836.$	$\tan^{-1}x, \sqrt[3]{x}$	x < 10 ¹⁰⁰			
$\underbrace{\text{STAT}}_{0} ymin = 5.$	$\ln x$, $\log x$, $\log_a x$	$10^{-99} \le x < 10^{100}, 10^{-99} \le a < 10^{100} (a \ne 1)$			
V V 40 .		• $y > 0$: $-10^{100} < x \log y < 100$			
		• $y = 0$: $0 < x < 10^{100}$			
$x = 3 \rightarrow y' = ?$ (ONC) 3 (2ndF) y' 3 y' 6.528394256	\mathcal{Y}^{x}	• $y < 0: x = n$			
$y = 46 \rightarrow x' = ?$ 46 (2ndF) x' 46x' 24.61590706		$(0 < x < 1: \frac{1}{x} = 2n - 1, x \neq 0)^*,$			
		$-10^{100} < x \log y < 100$			
x y 3 $\boxed{x^2}$ 12 $\boxed{x^2}$		• $y > 0$: $-10^{100} < \frac{1}{x} \log y < 100 \ (x \neq 0)$ • $y = 0$: $0 < x < 10^{100}$			
8 13	$x\sqrt{y}$	• $y < 0$: $x = 2n - 1$ ($0 < x < 1$: $\frac{1}{x} = n, x \neq 0$)*,			
5 2 1 X Y FRQ 4 23 200 1					
5 2 4 23 200 1 5 15 71 1 23 200 6		$-10^{100} < \frac{1}{x} \log y < 100$			
	e ^x	$-10^{100} < x \le 230.2585092$			
$15 71 \qquad \text{DATA} \qquad \text{Stat } 2[a+bx+cx^2] \qquad 0.$	10 ^{<i>x</i>}	$-10^{100} < x < 100$			
$a + bx + cx^2$	$\sinh x$, $\cosh x$, $\tanh x$	<i>x</i> ≤ 230.2585092			
a = 5.357506761 b = -3.120289663	$\sinh^{-1}x$	$ x < 10^{50}$			
$ \begin{array}{c} D = -3.120289663 \\ \downarrow C = 0.503334057 \end{array} $	$\cosh^{-1}x$	$1 \le x < 10^{50}$			
$\uparrow a + bx + cx^2$	$\tanh^{-1}x$	x <1			
	x ²	$ x < 10^{50}$			
	$\frac{x}{x^3}$	$ x < 2.15443469 \times 10^{33}$			
$x = 10 \rightarrow y' = ?$ ONC 10 (2ndF) y' 10 y' 24.4880159		$0 \le x < 10^{100}$			
$y = 22 \rightarrow x' = ?$ 22 [2ndF] x' 1: 9.63201409	$\frac{\sqrt{x}}{x^{-1}}$				
2: -3.432772026		$ x < 10^{100} (x \neq 0)$			
22 ALPHA (STAT) 22 x'2 5 5 5 -3 432772026	n!	$0 \le n \le 69^*$			
-3.432772026	nPr	$\frac{0 \leq r \leq n \leq 99999999999*}{(n-r)!} < 10^{100}$			
2					
	2	$0 \le r \le n \le 9999999999^*$ $0 \le r \le 69$			
$\overline{x} = \frac{\Sigma x}{n} \qquad \qquad$	_n C _r	$\frac{0 \le r \le 69}{(n-r)!} < 10^{100}$			
	↔DEG, D°M'S	$0^{\circ}0'0.00001" \le x < 10000^{\circ}$			
$sx = \sqrt{\frac{\Sigma x^2 - n\overline{x}^2}{n-1}}$	· · · · · · · · · · · · · · · · · · ·	$\frac{1}{\sqrt{x^2 + y^2}} < 10^{100}$			
$\overline{y} = \frac{\Sigma y}{n}$ $\sigma y = \sqrt{\frac{\Sigma y^2 - n\overline{y}^2}{n}}$	$x, y \rightarrow r, \theta$	$0 \le r < 10^{100}$			
$sy = \sqrt{\frac{\Sigma y^2 - n\overline{y}^2}{n-1}}$	$r, \theta \rightarrow x, y$	DEG: $ \theta < 10^{10}$ RAD: $ \theta < \frac{\pi}{180} \times 10^{10}$			
		GRAD: $ \theta < \frac{10}{9} \times 10^{10}$			
$(\textbf{MODE} (\textbf{TABLE}))$ $x^2 + 1 (\textbf{MODE} (2) (\textbf{LPHA}))$	DRG►	DEG \rightarrow RAD, GRAD \rightarrow DEG: $ x < 10^{100}$ RAD \rightarrow GRAD: $ x < \frac{\pi}{2} \times 10^{98}$			
$\begin{array}{c c} x & x^2 & + \\ \hline 1 & \text{(ENTER)} & \text{(ENTER)} \end{array}$	nGCDn, nLCMn	$0 < n < 10^{10}$ *			
$\begin{array}{c c} X_Start: -2 & \textcircled{\ } 2 & \fbox{\ } 2 & \fbox{\ } 2 & \fbox{\ } 1 & \fbox{\ } 2 & \fbox{\ } 2 & \fbox{\ } 1 & \fbox{\ } 2 & \r{\ } 2 & \r{\ } 1 & \r{\ } 2 & \r{\ } 2 & \r{\ } 1 & \r{\ } 2 & \r{\ } 2 & \r{\ } 1 & \r{\ } 2 & \r{\ } 2 & \r{\ } 1 & \r{\ } 2 & \r{\ } 2 & \r{\ } 1 & \r{\ } 2 & \r{\ } 2 & \r{\ } 1 & \r{\ } 2 & \r{\ } 2 & \r{\ } 1 & \r{\ } 1 & \r{\ } 2 & \r{\ } 1 & \r{\ } 1 & \r{\ } 2 & \r{\ } 1 & \r{\ } 1 & \r{\ } 2 & \r{\ } 1 & \$	R.Int(m, n)	$ m \le 99999999999^*$ $ n \le 99999999999^*$ $m < n, n - m < 10^{10}$			
$x^{2} + 1 \xrightarrow{\text{MODE } 2 \text{ (ALPHA)}} x^{2} + 1 \xrightarrow{\text{ENTER}} x^{2} + x^$	$ \rightarrow DEC \rightarrow BIN \rightarrow PEN \rightarrow OCT \rightarrow HEX AND OR XOR XNOR XNOR $	$\begin{array}{l} DEC: \ x \leq 9999999999\\ BIN: \ 10000000 \leq x \leq 11111111111\\ 0 \leq x \leq 11111111\\ PEN: \ 222222223 \leq x \leq 444444444\\ 0 \leq x \leq 2222222222\\ OCT: \ 400000000 \leq x \leq 777777777\\ 0 \leq x \leq 377777777\\ HEX: \ FDABF41C01 \leq x \leq FFFFFFFFFFF\\ O \leq x \leq 2540BE3FF \end{array}$			
$x + 5 \qquad \text{ALPHA} \qquad x + 1 \qquad \text{ANS1} \qquad \text{ANS2} \qquad \\ 5 \qquad \text{ENTER} \qquad 1 \qquad \text{ENTER} \qquad 1 \qquad \text{ENTER} \qquad 1 \qquad \\ X_Start: 1 \qquad 1 \qquad \text{ENTER} \qquad 1 \qquad \\ X_Step: 1 \qquad 1 \qquad \text{ENTER} \qquad 1 \qquad \\ \end{array}$					